
The Debian Administrator's Handbook

"The Debian Administrator's Handbook" is the title of the translation of the French best-
seller known as Cahier de l'Admin Debian. Written by two Debian developers — Raphaël
Hertzog and Roland Mas — it's a fantastic resource for all users of a Debian-based
distribution.

Given that traditional editors did not want to take the risk to make this translation, we
decided to do the translation ourselves and to self-publish the result. But we want to
go further than this, we want the result to be freely available (that is under the terms of a
license compatible with the Debian Free Software Guidelines of course).

However it's very difficult to spend several months of work without income. That's why
we're running a fundraising campaign. Thanks to the first 380 supporters, we reached our
first goal and we're now sure that the translation will happen. But your support is still
very important to reach the second goal: the liberation of the book.

It's easier to support a project that has already achieved something, instead of having only
promised it. That's why we're releasing this sample chapter of the book. We hope that
you'll enjoy it and that you'll join the hundreds of people who pledged some money
towards the liberation of the book.

Click here and contribute to the liberation fund

Raphaël Hertzog & Roland Mas,

http://raphaelhertzog.fr/livre/cahier-admin-debian/
http://www.ulule.com/debian-handbook/?utm_campaign=project_1973&utm_source=rh&utm_medium=pdf
http://www.ulule.com/debian-handbook/?utm_campaign=project_1973&utm_source=rh&utm_medium=pdf
http://www.debian.org/social_contract#guidelines
http://raphaelhertzog.fr/livre/cahier-admin-debian/

Chapter 6.

101

Maintenance and Updates: The APT
Tools
What makes Debian so popular with administrators is how easily software can be installed and how
easily the whole system can be updated. This unique advantage is largely due to the APT program,
whose features Falcot SA administrators studied with enthusiasm.

 APT is the abbreviation for Advanced Package Tool. What makes this program “advanced” is
its approach to packages. It doesn't simply evaluate them individually, but it considers them as a
whole and produces the best possible combination of packages depending on what is available and
compatible (according to dependencies).

VOCABULARY Package Source and Source Package
The word source can be ambiguous. A source package — a package containing the source
code of a program — should not be confused with a package source — a repository (website,
FTP server, CD-Rom, local directory, etc.) which contains packages.

APT needs to be given a “list of package sources”: the file /etc/apt/sources.list will list
the different repositories (or “sources”) that publish Debian packages. APT will then import the
list of packages published by each of these sources. This operation is achieved by downloading
Packages.gz or Packages.bz2 files (in case of a source of binary packages) and Sources.gz or
Sources.bz2 files (in case of a source of source packages) and by analyzing their contents. When
an old copy of these files is already present, APT can update it by only downloading the differences
(see the sidebar TIP Incremental Upgrade).

BACK TO BASICS gzip, bzip2, LZMA and XZ Compression

A .gz extension refers to a file compressed with the gzip utility. gzip is the fast and efficient
traditional Unix utility to compress files. Newer tools achieve better rates of compression but
require more calculation time to compress a file. Among them, and by order of appearance,
there are bzip2 (generating files with a .bz2 extension), lzma (generating .lzma files) and xz
(generating .xz files).

6.1. Filling in the sources.list File

Each active line of the /etc/apt/sources.list file contains the description of a source, made of 3
parts separated by spaces.

The first field indicates the source type:

• “deb” for binary packages,

• “deb-src” for source packages.

The second field gives the base URL of the source (combined with the filenames present in the
Packages.gz files, it must give a full and valid URL): this can consist in a Debian mirror or in any
other package archive set up by a third party. The URL can start with file:// to indicate a local
source installed in the system's file hierarchy, with http:// to indicate a source accessible from a

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Chapter 6. Maintenance and Updates: The APT Tools

102

web server, or with ftp:// for a source available on an FTP server. The URL can also start with
cdrom:// for CD-Rom based installations, although this is less frequent, since network-based
installation methods are more and more common.

The syntax of the last field depends on whether the source corresponds to a Debian mirror or not.
In the case of a Debian mirror, name the chosen distribution (stable, testing, unstable or their
current code names — see the list in the sidebar COMMUNITY Bruce Perens, a controversial leader),
then the sections to enable (chosen between main, contrib, and non-free). In all other cases,
simply indicate the subdirectory of the desired source (this is often a simple “./” which refers to the
absence of a subdirectory — the packages are then directly at the specified URL).

VOCABULARY main, contrib and non-free Archives

Debian uses three sections to differentiate packages according to the licenses chosen by the
authors of each program. Main (the main archive) gathers all packages which fully comply with
the Debian Free Software Guidelines.

The non-free archive is different because it contains software which does not (entirely) conform
to these principles but which can nevertheless be distributed freely. This archive, which is not
officially part of Debian, is a service for users who could need those softwares — however
Debian always recommends giving priority to free software. The existence of this section
represents a considerable problem for Richard M. Stallman and keeps the Free Software
Foundation from recommending Debian to users.

Contrib (contributions) is a stock of open source software which cannot function without some
non-free elements. These elements can be software from the non-free section, or non-free
files such as game ROMs, BIOS of consoles, etc. Contrib also includes free software whose
compilation requires proprietary elements. This was initially the case for the OpenOffice.org
office suite, which used to require a proprietary Java environment.

Generally, the contents of a standard sources.list file can be the following:

Example 6.1. /etc/apt/sources.list File

Security updates
deb http://security.debian.org/ stable/updates main contrib non-free
deb-src http://security.debian.org/ stable/updates main contrib non-free

Debian mirror
deb http://ftp.debian.org/debian stable main contrib non-free
deb-src http://ftp.debian.org/debian stable main contrib non-free

This file lists all sources of packages associated with the stable version of Debian. If you would like
to use Testing or Unstable, you will of course have to add (or replace them with) the appropriate
lines. When the desired version of a package is available on several mirrors, the first one listed in the
sources.list file will be used. For this reason, non-official sources are usually added at the end of
the file.

TIP /etc/apt/sources.list.d/*.list Files
If many package sources are referenced, it can be useful to split them in multiple files. Each
part is then stored in /etc/apt/sources.list.d/filename.list (see sidebar BACK TO
BASICS Directories Ending in .d).

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Other Available Official Repositories

103

QUICK LOOK apt-spy

This software tests the download speed from several Debian mirrors and generates a
sources.list file which points to the the fastest mirror.

The mirror selected during installation is generally suitable since its selection is based on
the country. However, if the download is a little slow, or after a move, you can try running the
application available in the apt-spy package.

The sources.list file contains several other entry types: some describe the Debian CD-Roms you
have. Contrary to other entries, a CD-Rom is not always available since it has to be inserted into the
drive and since only one disc can be read at a time — consequently, these sources are managed
in a slightly different way. These entries need to be added with the apt-cdrom program, usually
executed with the add parameter. The latter will then request the disc to be inserted in the drive and
will browse its contents looking for Packages files. It will use these files to update its database of
available packages (this is usually done by the aptitude update command). From then on, APT
can require the disc to be inserted if it needs one of its packages.

6.1.1. Other Available Official Repositories

6.1.1.1. Stable Updates

Once published, the Stable distribution is only updated about once every 2 months in order to
integrate the security updates published on security.debian.org.

This minor release can also include updates for packages that have to evolve over time... like
spamassassin's spam detection rules, clamav's virus database, or the daylight-saving rules of all
timezones (tzdata).

All those updates are prepared in a repository known as proposed-updates. Anyone can use this
repository to test those updates before their official publication. The extract below uses the squeeze-
proposed-updates alias which is both more explicit and more consistent since lenny-proposed-
updates also exists (for the Oldstable updates):

deb http://ftp.debian.org/debian squeeze-proposed-updates main contrib non-free

Once ready, the most important updates — those which cannot wait for the next minor Debian release
— are published in the stable-updates repository (which most systems are expected to use):

deb http://ftp.debian.org/debian stable-updates main contrib non-free

6.1.1.2. The Backports From backports.debian.org

Unsurprisingly, the backports.debian.org server hosts “package backports”. The term refers
to a package of a recent software which has been recompiled for an older distribution, generally for
Stable. When the distribution becomes a little dated, numerous software projects have released new

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Chapter 6. Maintenance and Updates: The APT Tools

104

versions that are not integrated into the current Stable (which is only modified to address the most
critical problems, such as security problems). Since the Testing and Unstable distributions can be
more risky, some volunteers sometimes offer recompilations of recent software applications for Stable,
which has the advantage to limit potential instability to a small number of chosen packages. http://
backports.debian.org/

The sources.list entry for backports targeting the Squeeze distribution is the following:

deb http://backports.debian.org/debian-backports squeeze-backports main contrib non-free

6.1.1.3. The Experimental Repository

The archive of Experimental packages is present on all Debian mirrors, and contains packages which
are not in the Unstable version yet because of their substandard quality — they are often software
development versions or pre-versions (alpha, beta, release candidate…). A package can also be sent
there after undergoing subsequent changes which can generate problems. The maintainer then tries
to uncover them thanks to advanced users who can manage important issues. After this first stage, the
package is moved into Unstable, where it reaches a much larger audience and where it will be tested
in much more detail.

Experimental is generally used by users who do not mind breaking their system and then repairing it.
This distribution gives the possibility to import a package which a user wants to try or use as the need
arises. That is exactly how Debian approaches it, since adding it in APT's sources.list file does
not lead to the systematic use of its packages. The line to be added is:

deb http://ftp.debian.org/debian experimental main contrib non-free

6.1.2. Non-Official Resources: apt-get.org and
mentors.debian.net

There are numerous non-official sources of Debian packages set up by advanced users who have
recompiled some softwares, by programmers who make their creation available to all, and even by
Debian developers who offer pre-versions of their package online. A web site was set up to find these
alternative sources more easily. It contains an impressive amount of Debian package sources which
can immediately be integrated into sources.list files. However, be careful not to add random
packages. Each source is designed for a particular version of Debian (the one used to compile the
packages in question); each user should maintain a certain coherence in what they choose to install.
http://www.apt-get.org/

The mentors.debian.net site is also interesting, since it gathers packages created by candidates
to the status of official Debian developer or by volunteers who wish to create Debian packages without
going through that process of integration. These packages are made available without any guarantee
regarding their quality; make sure that you check their origin and integrity and then test them before
you consider using them in production.

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

http://backports.debian.org/
http://backports.debian.org/
http://www.apt-get.org/

aptitude and apt-get Commands

105

COMMUNITY The debian.net Sites

The debian.net domain is not an official resource of the Debian project. Each Debian developer
may use that domain name for their own use. These websites can contain unofficial services
(sometimes personal sites) hosted on a machine which does not belong to the project and set
up by Debian developers, or even prototypes about to be moved on to debian.org. Two reasons
can explain why some of these prototypes remain on debian.net: either no one has made the
necessary effort to transform it into an official service (hosted on the debian.org domain, and
with a certain guarantee of maintenance), or the service is too controversial to be officialized.

Installing a package means giving root rights to its creator, because they decide on the contents of
the initialization scripts which are run under that identity. Official Debian packages are created by
volunteers who have been co-opted and reviewed and who can seal their packages so that their origin
and integrity can be checked.

In general, be wary of a package whose origin you don't know and which isn't hosted on one of the
official Debian servers: evaluate the degree to which you can trust the creator, and check the integrity
of the package. http://mentors.debian.net/

GOING FURTHER Old Package Versions: snapshot.debian.org

A new service (introduced in April 2010) can be used to “go backwards in time” and to find an
old version of a package. It can be used for example to identify which version of a package
introduced a regression, and more concretely, to come back to the former version while waiting
for the regression fix.

6.2. aptitude and apt-get Commands

APT is a vast project, whose original plans included a graphical interface. It is based on a library which
contains the core application, and apt-get is the first interface — command-line based — which was
developed within the project.

Numerous other graphical interfaces then appeared as external projects: synaptic, aptitude
(which includes both a text mode interface and a graphical one — even if not complete yet), wajig,
etc. The most recommended interface, aptitude, is the one used during the installation of Debian.
Since its command-line syntax is very similar to apt-get's, we will be focusing on aptitude in the
examples given in this section. When there are major differences between aptitude and apt-get,
these differences will be detailed.

6.2.1. Initialization
For any work with APT, the list of available packages needs to be updated; this can be done simply
through aptitude update. Depending on the speed of your connection, the operation can take
a while since it involves downloading a certain number of Packages.(gz|bz2) files (or even
Sources.(gz|bz2)), which have gradually become bigger and bigger as Debian has developed
(more than 8 MB for the largest Packages.gz — from the main section). Of course, installing from a
CD-Rom set does not require any downloading — in this case, the operation is very fast.

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

http://mentors.debian.net/

Chapter 6. Maintenance and Updates: The APT Tools

106

6.2.2. Installing and Removing

With APT, packages can be added or removed from the system, respectively with aptitude
install package and aptitude remove package. In both cases, APT will automatically install
the necessary dependencies or delete the packages which depend on the package that is being
removed. The aptitude purge package or apt-get purge package commands involve a
complete uninstallation — the configuration files are also deleted.

TIP Installing the Same Selection of Packages Several Times
It can be useful to systematically install the same list of packages on several computers. This
can be done quite easily.

First, retrieve the list of packages installed on the computer which will serve as the “model” to
copy.

$ dpkg --get-selections >pkg-list

The pkg-list file then contains the list of installed packages. Next, transfer the pkg-list file
on the computers you want to update and use the following commands:

dpkg --set-selections <pkg-list
apt-get dselect-upgrade

The first command registers the list of packages you wish to install, then the apt-get invocation
executes the required operations! aptitude does not have this command.

TIP Removing and Installing at the Same Time
It is possible to ask aptitude to install certain packages and remove others on the same
command line by adding a suffix. With an aptitude install command, add “-” to the names
of the packages you wish to remove. With an aptitude remove command, add “+” to the
names of the packages you wish to install.

The next example shows two different ways to install package1 and to remove package2.

aptitude install package1 package2-
[...]
aptitude remove package1+ package2
[...]

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

System Upgrade

107

TIP apt-get --reinstall and aptitude reinstall

The system can sometimes be damaged after the removal or modification of files in a package.
The easiest way to retrieve these files is to reinstall the affected package. Unfortunately, the
packaging system finds that the latter is already installed and politely refuses to reinstall it; to
avoid this, use the --reinstall option of the apt-get command. The following command
reinstalls postfix even if it is already present:

apt-get --reinstall install postfix

The aptitude command line is slightly different, but achieves the same result with aptitude
reinstall postfix.

The problem does not arise with dpkg, but the administrator rarely uses it directly.

Be careful, using apt-get --reinstall to restore packages modified during an attack
certainly cannot recover the system as it was. Chapter 14, Security details the necessary steps
to take with a hacked system (see Section 14.6, “Dealing with a Compromised Machine”).

If the file sources.list mentions several distributions, it is possible to give the version of
the package to install. A specific version number can be requested with aptitude install
package=version, but indicating its distribution of origin (Stable, Testing or Unstable) — with
aptitude install package/distribution — is usually preferred. With this command, it is
possible to go back to an older version of a package (if for instance you know that it works well),
provided that it is still available in one of the sources referenced by the sources.list file. Otherwise
the snapshot.debian.org archive can come to the rescue (see sidebar GOING FURTHER Old
Package Versions: snapshot.debian.org).

Example 6.2. Installation of the Unstable Version of spamassassin

aptitude install spamassassin/unstable

GOING FURTHER The Cache of .deb Files
APT keeps a copy of each downloaded .deb file in the directory /var/cache/apt/
archives/. In case of frequent updates, this directory can quickly take a lot of disk space with
several versions of each package; you should regularly sort through them. Two commands
can be used: aptitude clean entirely empties the directory; aptitude autoclean only
removes packages which cannot be downloaded (because they have disappeared from the
Debian mirror) and are therefore clearly useless (the configuration parameter APT::Clean-
Installed can prevent the removal of .deb files that are currently installed).

6.2.3. System Upgrade

Regular upgrades are recommended, because they include the latest security updates. To upgrade,
use aptitude safe-upgrade or apt-get upgrade (of course after aptitude update). This
command looks for installed packages which can be upgraded without removing any packages. In
other words, the goal is to ensure the least intrusive upgrade possible. apt-get is slightly more
demanding than aptitude because it will refuse to install packages which were not installed
beforehand.

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Chapter 6. Maintenance and Updates: The APT Tools

108

TIP Incremental Upgrade
As we explained earlier, the aim of the aptitude update command is to download for each
package source the corresponding Packages (or Sources) file. However, even after a bzip2
compression, these files can remain rather large (the Packages.bz2 for the main section of
Squeeze takes more than 8 MB). If you wish to upgrade regularly, these downloads can take up
a lot of time.

A “new feature” (available since Etch) is that APT can now download the changes since the
previous update, as opposed to the entire file. To achieve this, official Debian mirrors distribute
different files which list the differences between one version of the Packages file and the
following version. They are generated at each update of the archives and a history of one
week is kept. Each of these “diff” files only takes a few dozen kilobytes for Unstable, so that
the amount of data downloaded by a weekly aptitude update is often divided by 10. For
distributions like Stable and Testing, which change less, the gain is even more noticeable.

However, it can sometimes be of interest to force the download of the entire Packages.bz2
file, especially when the last upgrade is very old and when the mechanism of incremental
differences would not contribute much. This can also be interesting when network access is very
fast but when the processor of the machine to upgrade is rather slow, since the time saved on
the download is more than lost when the computer calculates the new versions of these files
(starting with the older versions and applying the downloaded differences). To do that, you can
use the configuration parameter Acquire::Pdiffs and set it to false.

aptitude will generally select the most recent version number (except for Experimental packages,
which are ignored by default whatever their version number). If you specified Testing or Unstable in
your sources.list, aptitude safe-upgrade will switch most of your Stable system to Testing
or Unstable, which might not be what you intended.

To tell aptitude to use a specific distribution when searching for upgraded packages, you need
to use the option -t or --target-release, followed by the name of the distribution you want
(for example: aptitude -t stable safe-upgrade). To avoid specifying this option every time
you use aptitude, you can add APT::Default-Release "stable"; in the file /etc/apt/
apt.conf.d/local.

For more important upgrades, such as the change from one major Debian version to the next,
you need to use aptitude full-upgrade (the option used to be named dist-upgrade, for
“distribution upgrade”). With this instruction, aptitude will complete the upgrade even if it has to
remove some obsolete packages or install new dependencies. This is also the command used by
users who work daily with the Debian Unstable release and follow its evolution day by day. It is so
simple that it hardly needs explanation: APT's reputation is based on this great functionality.

aptitude dist-upgrade is still available as a synonym for aptitude full-upgrade; apt-get
only recognizes the former.

6.2.4. Configuration Options

Besides the configuration elements already mentioned, it is possible to configure certain aspects of
APT by adding directives in a file of the /etc/apt/apt.conf.d/ directory. Remember for instance
that it is possible for APT to tell dpkg to ignore file conflict errors by specifying DPkg::Options
{ "--force-overwrite"; }.

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Managing Package Priorities

109

If the Web can only be accessed through a proxy, add a line like Acquire::http::proxy
"http://yourproxy:3128". For an FTP proxy, write Acquire::ftp::proxy
"ftp://yourproxy". To discover more configuration options, read the apt.conf(5) manual page with
the command man apt.conf (for details on manual pages, see next chapter).

BACK TO BASICS Directories Ending in .d

Directories with a .d suffix are used more and more often. Each directory represents a
configuration file which is split over multiple files. In this sense, all of the files in /etc/apt/
apt.conf.d/ are instructions for the configuration of APT. APT includes them in alphabetical
order, so that the last ones can modify a configuration element defined in one of the first ones.

This structure brings some flexibility to the machine administrator and to the package
maintainers. Indeed, the administrator can easily modify the configuration of the software by
adding a ready-made file in the directory in question without having to change an existing file.
Package maintainers use the same approach when they need to adapt the configuration of
another software to ensure that it perfectly co-exists with theirs. However, the Debian policy
explicitly forbids modifying configuration files of other packages — only users are allowed to
do this. Remember that during a package upgrade, the user gets to choose the version of the
configuration file that should be kept when a modification has been detected. Any external
modification of the file would trigger that request, which would disturb the administrator, who is
sure not to have changed anything.

Without a .d directory, it is impossible for an external package to change the settings of a
program without modifying its configuration file. Instead it must invite the user to do it himself
and lists the operations to be done in the file /usr/share/doc/package/README.Debian.

Depending on the application, the .d directory is used directly or managed by an external script
which will concatenate all the files to create the configuration file itself. It is important to execute
the script after any change in that directory so that the most recent modifications are taken into
account. In the same way, it is important not to work directly in the configuration file created
automatically, since everything would be lost at the next execution of the script. Choosing one
method (.d directory used directly or a file generated from that directory) is usually imposed by
implementation constraints, but in both cases the gains in terms of configuration flexibility more
than make up for the small complications that they entail. The Exim 4 mail server is an example
of the generated file method: it can be configured through several files (/etc/exim4/conf.d/
*) which are concatenated into /var/lib/exim4/config.autogenerated by the update-
exim4.conf command.

6.2.5. Managing Package Priorities
One of the most important aspects in the configuration of APT is the management of the priorities
associated with each package source. For instance, you might want to extend one distribution with
one or two newer packages from Testing, Unstable or Experimental. It is possible to assign a priority to
each available package (the same package can have several priorities depending on its version or the
distribution providing it). These priorities will influence APT's behavior: for each package, it will always
select the version with the highest priority (except if this version is older than the installed one and if its
priority is less than 1000).

APT defines several default priorities. Each installed package version has a priority of 100. A non-
installed version has a priority of 500 by default, but it can jump to 990 if it is part of the target release
(defined with the -t command-line option or the APT::Target-Release configuration directive).

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Chapter 6. Maintenance and Updates: The APT Tools

110

You can modify the priorities by adding entries in the file /etc/apt/preferences with the names of
the affected packages, their version, their origin and their new priority.

APT will never install an older version of a package (that is, a package whose version number is
lower than the one of the currently installed package) except if its priority is higher than 1000. APT will
always install the highest priority package which follows this constraint. If two packages have the same
priority, APT installs the newest one (whose version number is the highest). If two packages of same
version have the same priority but differ in their content, APT installs the version that is not installed
(this rule has been created to cover the case of a package update without the increment of the revision
number, which is usually required).

In more concrete terms, a package whose priority is less than 0 will never be installed. A package with
a priority ranging between 0 and 100 will only be installed if no other version of the package is already
installed. With a priority between 100 and 500, the package will only be installed if there is no other
newer version installed or available in another distribution. A package of priority between 500 and 990
will only be installed if there is no newer version installed or available in the target distribution. With a
priority between 990 and 1000, the package will be installed except if the installed version is newer.
A priority greater than 1000 will always lead to the installation of the package even if it forces APT to
downgrade to an older version.

When APT checks /etc/apt/preferences, it first takes into account the most specific entries
(often those specifying the concerned package), then the more generic ones (including for example all
the packages of a distribution). If several generic entries exist, the first match is used. The available
selection criteria include the package's name and the source providing it. Every package source
is identified by the information contained in a Release file that APT downloads together with the
Packages.gz files. It specifies the origin (usually “Debian” for the packages of official mirrors, but it
can also be a person's or an organization's name for third-parties repositories). It also gives the name
of the distribution (usually Stable, Testing, Unstable or Experimental for the standard distributions
provided by Debian) together with its version (for example 5.0 for Debian Lenny). Let's have a look at
its syntax through some realistic case studies of this mechanism.

SPECIFIC CASE Priority of Experimental

If you listed Experimental in your sources.list file, the corresponding packages will almost
never be installed because their default APT priority is 1. This is of course a specific case,
designed to keep users from installing Experimental packages by mistake. The packages
can only be installed by typing aptitude install package/experimental — users
typing this command can only be aware of the risks that they take. It is still possible (though not
recommended) to treat packages of Experimental like those of other distributions by giving them
a priority of 500. This is done with a specific entry in /etc/apt/preferences:

Package: *
Pin: release a=experimental
Pin-Priority: 500

Let's suppose that you only want to use packages from the stable version of Debian. Those provided
in other versions should not be installed except if explicitly requested. You could write the following
entries in the /etc/apt/preferences file:

Package: *
Pin: release a=stable
Pin-Priority: 900

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Working with Several Distributions

111

Package: *
Pin: release o=Debian
Pin-Priority: -10

a=stable defines the name of the selected distribution. o=Debian limits the scope to packages
whose origin is “Debian”.

Let's now assume that you have a server with several local programs depending on the version 5.10 of
Perl and that you want to ensure that upgrades will not install another version of it. You could use this
entry:

Package: perl
Pin: version 5.10*
Pin-Priority: 1001

The reference documentation for this configuration file is available in the manual page
apt_preferences(5), which you can display with man apt_preferences.

TIP Comments in /etc/apt/preferences

There is no official syntax to put comments in the /etc/apt/preferences file, but some
textual descriptions can be provided by putting one or more “Explanation” fields at the start of
each entry:

Explanation: The package xserver-xorg-video-intel provided
Explanation: in experimental can be used safely
Package: xserver-xorg-video-intel
Pin: release a=experimental
Pin-Priority: 500

6.2.6. Working with Several Distributions
aptitude being such a marvelous tool, it is tempting to pick packages coming from other
distributions. For example, after having installed a Stable system, you might want to try out a software
available in Testing or Unstable without diverging too much from the system's initial state.

Even if you will occasionnaly encounter problems while mixing packages from different distributions,
aptitude manages such coexistence very well and limits risks very effectively. The best way to
proceed is to list all distributions used in /etc/apt/sources.list (some people always put the
three distributions, but remember that Unstable is reserved for experienced users) and to define your
reference distribution with the APT::Default-Release parameter (see Section 6.2.3, “System
Upgrade”).

Let's suppose that Stable is your reference distribution but that Testing and Unstable are also listed
in your sources.list file. In this case, you can use aptitude install package/testing to
install a package from Testing. If the installation fails due to some unsatisfiable dependencies, let it
solve those dependencies within Testing by adding the -t testing parameter. The same obviously
applies to Unstable.

In this situation, upgrades (safe-upgrade and dist-upgrade) are done within Stable except for
packages already upgraded to an other distribution: those will follow updates available in the other
distributions. We'll explain this behavior with the help of the default priorities set by APT below. Do not
hesitate to use apt-cache policy (see sidebar) to verify the given priorities.

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Chapter 6. Maintenance and Updates: The APT Tools

112

Everything centers around the fact that APT only considers packages of higher or equal version than
the installed one (assuming that /etc/apt/preferencs has not been used to force priorities higher
than 1000 for some packages).

TIP apt-cache Policy
To gain a better understanding of the mechanism of priority, do not hesitate to execute apt-
cache policy to display the default priority associated with each package source. You can
also use apt-cache policy package to display the priorities of all available versions of a
given package.

Let's assume that you have installed version 1 of a first package from Stable and that version 2 and 3
are available respectively in Testing and Unstable. The installed version has a priority of 100 but
the version available in Stable (the very same) has a priority of 990 (because it is part of the target
release). Packages in Testing and Unstable have a priority of 500 (the default priority of a non-installed
version). The winner is thus version 1 with a priority of 990. The package “stays in Stable”.

Let's take the example of another package whose version 2 has been installed from Testing. Version 1
is available in Stable and version 3 in Unstable. Version 1 (of priority 990 — thus lower than 1000)
is discarded because it is lower than the installed version. This only leaves version 2 and 3, both of
priority 500. Faced with this alternative, APT selects the newest version, the one from Unstable. If
you don't want a package installed from Testing to migrate to Unstable, you have to assign a priority
lower than 500 (490 for example) to packages coming from Unstable. You can modify /etc/apt/
preferences to this effect:

Package: *
Pin: release a=unstable
Pin-Priority: 490

6.3. The apt-cache Command

The apt-cache command can display much of the information stored in APT's internal database.
This information is a sort of cache since it is gathered from the different sources listed in the
sources.list file. This happens during the aptitude update operation.

VOCABULARY Cache
A cache is a temporary storage system used to speed up frequent data access when the usual
access method is expensive (performance-wise). This concept can be applied in numerous
situations and at different scales, from the core of microprocessors up to high-end storage
systems.

In the case of APT, the reference Packages files are those located on Debian mirrors. That
said, it would be very ineffective to go through the network for every search that we might
want to do in the database of available packages. That is why APT stores a copy of those
files (in /var/lib/apt/lists/) and searches are done within those local files. Similarly, /
var/cache/apt/archives/ contains a cache of already downloaded packages to avoid
downloading them again if you need to reinstall them after a removal.

The apt-cache command can do keyword-based package searches with apt-cache search
keyword. It can also display the headers of the package's available versions with apt-cache show
package. This command provides the package's description, its dependencies, the name of its
maintainer, etc. Note that aptitude search and aptitude show work in the same way.

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Frontends: aptitude, synaptic

113

Some features are more rarely used. For instance, apt-cache policy displays the priorities
of package sources as well as those of individual packages. Another example is apt-cache
dumpavail which displays the headers of all available versions of all packages. apt-cache
pkgnames displays the list of all the packages which appear at least once in the cache.

6.4. Frontends: aptitude, synaptic

APT is a C++ program whose code mainly resides in the libapt-pkg shared library. Using a shared
library facilitates the creation of user interfaces (front-ends), since the code contained in the library can
easily be reused. Historically, apt-get was only designed as a test front-end for libapt-pkg but its
success tends to obscure this fact.

6.4.1. aptitude
aptitude is an interactive program that can be used in semi-graphical mode on the console. You can
browse the list of installed and available packages, look up all the available information, and select
packages to install or remove. The program is designed specifically to be used by administrators, so
that its default behaviors are much more intelligent than apt-get's, and its interface much easier to
understand.

Figure 6.1. The aptitude Package Manager

When it starts, aptitude shows a list of packages sorted by state (installed, non-installed, or installed
but not available on the mirrors — other sections display tasks, virtual packages, and new packages
that appeared recently on mirrors). To facilitate thematic browsing, other views are available. In all
cases, aptitude displays a list combining categories and packages on the screen. Categories are
organized through a tree structure, whose branches can respectively be unfolded or closed with the
Enter, [and] keys. + should be used to mark a package for installation, - to mark it for removal and

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Chapter 6. Maintenance and Updates: The APT Tools

114

_ to purge it (note than these keys can also be used for categories, in which case the corresponding
actions will be applied to all the packages of the category). u updates the lists of available packages
and Shift+u prepares a global system upgrade. g switches to a summary view of the requested
changes (and typing g again will apply the changes), and q quits the current view. If you are in the
initial view, this will effectively close aptitude.

DOCUMENTATION aptitude
This section does not cover the finer details of using aptitude, it rather focuses on giving you a
survival kit to use it. aptitude is rather well documented and we advise you to use its complete
manual available in the aptitude-doc-en package. file:///usr/share/doc/aptitude/html/en/index.html

To search for a package, you can type / followed by a search pattern. This pattern matches the name
of the package, but can also be applied to the description (if preceded by ~d), to the section (with
~s) or to other characteristics detailed in the documentation. The same patterns can filter the list of
displayed packages: type the l key (as in limit) and enter the pattern.

6.4.1.1. Tracking Automatically Installed Packages
One of the essential functionnalities of aptitude (which has also been integrated to apt-get
since Lenny) is the tracking of packages installed only through dependencies. These packages are
called “automatic” and are tagged with an “A” in the list of packages — they often include libraries
for instance. When a package is removed, the corresponding automatic packages are also selected
for removal unless another “manually installed” package depends on them. It is possible to mark a
package as automatic (with Shift+m) or to remove the mark (m key). When maintaining a system
with aptitude, it is a good habit to mark as automatic any package that you don't need directly so
that they are automatically removed when they aren't necessary anymore. You can either navigate the
list of installed packages and play with Shift+m, or apply the flag to entire sections (for example the
libs section). This habit can help you to keep your system tidy and offers a simple way to visualize
the packages in use on a machine, without all the libraries and dependencies that you don't really care
about. The related pattern that can be used with l (to activate the filter mode) is ~i!~M. It specifies
that you only want to see installed packages (~i) not marked as automatic (!~M).

People might want to know why an automatically installed package is present on the system. To get
this information from the command-line, you can use aptitude why package:

$ aptitude why python-debian
i aptitude Recommends apt-xapian-index
i A apt-xapian-index Depends python-debian (>= 0.1.15)

WORTH FOLLOWING Recent Evolutions of apt-get and aptitude
Some of the advantages that aptitude historically had over apt-get have recently
disappeared. For instance, since the release of Lenny, apt-get memorizes the packages that
have been installed only to satisfy dependencies, just like aptitude has always done. It can
also follow recommendations expressed by one package on another.

Among the recent evolutions of aptitude, a new version with a graphical interface is currently
being developed. Even if it's available in Squeeze (in the separate aptitude-gtk package), it's not
complete yet and is subject to stability issues.

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

aptitude

115

TOOL Using aptitude on the Command-Line Interface
Most of aptitude's features are accessible via the interactive interface as well as via
command-lines. These command-lines will seem familiar to regular users of apt-get and apt-
cache.

The advanced features of aptitude are also available on the command-line. You can use the
same package search patterns as in the interactive version. For example, if you want to run
the previously suggested cleanup of “automatic” packages, and if you know that none of the
locally installed programs require any particular libraries or Perl modules, you can mark the
corresponding packages as automatic with a single command:

aptitude markauto '~slibs|~sperl'

Here, you can clearly see the power of the search pattern system of aptitude, which enables
the instant selection of all the packages in the libs and perl sections.

Beware, if some packages are marked as automatic and if no other package depends on them,
they will be removed immediately (after a confirmation request).

ALTERNATIVE deborphan and debfoster
Before aptitude came to life with its tracking of automatic packages, there were two utilities
producing lists of unnecessary packages: deborphan and debfoster.

deborphan is the most rudimentary of both. It simply scans the libs and oldlibs sections (in
the absence of supplementary instructions) looking for the packages that are currently installed
and that no other packages depends on. The resulting list can then serve as a basis to remove
unneeded packages.

debfoster has a more elaborate approach, very similar to aptitude's: it maintains a list of
packages that have been explicitly installed, and remembers what packages are really required
between each invocation. If new packages appear on the system and if debfoster doesn't
know them as required packages, they will be shown on the screen together with a list of their
dependencies. The program then offers a choice: remove the package (possibly together with
those that depend on it), mark it as explicitly required, or ignore it temporarily.

6.4.1.2. Managing Recommendations, Suggestions and Tasks
Another interesting feature of aptitude is the fact that it respects recommendations between
packages while still giving users the choice not to install them on a case by case basis. For example,
the gnome-desktop-environment package recommends gnome-accessibility (among others). When
you select the former for installation, the latter will also be selected (and marked as automatic if
not already installed on the system). Typing g will make it obvious: gnome-accessibility appears
on the summary screen of pending actions in the list of packages installed automatically to satisfy
dependencies. However, you can decide not to install it by deselecting it before confirming the
operations.

Note that this recommendation tracking feature does not apply to upgrades. For instance, if a new
version of gnome-desktop-environment recommends a package that it did not recommend formerly,
the package won't be marked for installation. However, it will be listed on the upgrade screen so that
the administrator can still select it for installaion.

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Chapter 6. Maintenance and Updates: The APT Tools

116

Suggestions between packages are also taken into account, but in a manner adapted to their specific
status. For example, since gnome-desktop-environment suggests gnome-audio, the latter will be
displayed on the summary screen of pending actions (in the section of packages suggested by other
packages). This way, it is visible and the administrator can decide whether to take the suggestion into
account or not. Since it is only a suggestion and not a dependency or a recommendation, the package
will not be selected automatically — its selection requires a manual intervention from the user (thus,
the package will not be marked as automatic).

In the same spirit, remember that aptitude makes intelligent use of the concept of task. Since
tasks are displayed as categories in the screens of package lists, you can either select a full task for
installation or removal, or browse the list of packages included in the task to select a smaller subset.

6.4.1.3. Better Solver Algorithms
To conclude this section, let's note that aptitude has more elaborate algorithms compared to apt-
get when it comes to resolving difficult situations. When a set of actions is requested and when
these combined actions would lead to an incoherent system, aptitude evaluates several possible
scenarios and presents them in order of decreasing relevance. However, these algorithms are not
failproof. Fortunately there is always the possibility to manually select the actions to perform. When
the currently selected actions lead to contradictions, the upper part of the screen indicates a number
of “broken” packages (and you can directly navigate to those packages by pressing b). It is then
possible to manually build a solution for the problems found. In particular, you can get access to the
different available versions by simply selecting the package with Enter. If the selection of one of
these versions solves the problem, you should not hesitate to use the function. When the number of
broken packages gets down to zero, you can safely go the summary screen of pending actions for a
last check before you apply them.

NOTE aptitude's Log
Like dpkg, aptitude keeps a trace of executed actions in its logfile (/var/log/aptitude).
However, since both commands work at a very different level, you cannot find the same
information in their respective logfiles. While dpkg logs all the operations executed on individual
packages step by step, aptitude gives a broader view of high-level operations like a system-
wide upgrade.

Beware, this logfile only contains a summary of operations performed by aptitude. If other
front-ends (or even dpkg itself) are occasionaly used, then aptitude's log will only contain a
partial view of the operations, so you can't rely on it to build a trustworthy history of the system.

6.4.2. synaptic
synaptic is a graphical package manager for Debian which features a clean and efficient graphical
interface based on GTK+/GNOME. Its many ready-to-use filters give fast access to newly available
packages, installed packages, upgradable packages, obsolete packages and so on. If you browse
through these lists, you can select the operations to be done on the packages (install, upgrade,
remove, purge); these operations are not performed immediately, but put into a task list. A single click
on a button then validates the operations, and they are performed in one go.

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Checking Package Authenticity

117

Figure 6.2. synaptic Package Manager

6.5. Checking Package Authenticity

Security is very important for Falcot SA administrators. Accordingly, they need to ensure that they
only install packages which are guaranteed to come from Debian with no tampering on the way.
A computer cracker could try to add malicious code to an otherwise legitimate package. Such a
package, if installed, could do anything the cracker designed it to do, including for instance disclosing
passwords or confidential information. To circumvent this risk, Debian provides a tamper-proof seal to
guarantee — at install time — that a package really comes from its official maintainer and hasn't been
modified by a third party.

The seal works with a chain of cryptographical hashes and a signature. The signed file is the
Release file, provided by the Debian mirrors. It contains a list of the Packages files (including their
compressed forms, Packages.gz and Packages.bz2, and the incremental versions), along with
their MD5, SHA1 and SHA256 hashes, which ensures that the files haven't been tampered with.
These Packages files contain a list of the Debian packages available on the mirror, along with their
hashes, which ensures in turn that the contents of the packages themselves haven't been altered
either.

The trusted keys are managed with the apt-key command found in the apt package. This program
maintains a keyring of GnuPG public keys, which are used to verify signatures in the Release.gpg
files available on the mirrors. It can be used to add new keys manually (when non-official mirrors are
needed). Generally however, only the official Debian keys are needed. These keys are automatically
kept up-to-date by the debian-archive-keyring package (which invokes apt-key when it is installed

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Chapter 6. Maintenance and Updates: The APT Tools

118

or upgraded). However, the first installation of this particular package requires caution: even if the
package is signed like any other, the signature cannot be verified externally. Cautious administrators
should therefore check the fingerprints of imported keys before trusting them to install new packages:

apt-key fingerprint
/etc/apt/trusted.gpg

pub 1024D/F42584E6 2008-04-06 [expires: 2012-05-15]
 Key fingerprint = 7F5A 4445 4C72 4A65 CBCD 4FB1 4D27 0D06 F425 84E6
uid Lenny Stable Release Key <debian-release@lists.debian.org>

pub 4096R/55BE302B 2009-01-27 [expires: 2012-12-31]
 Key fingerprint = 150C 8614 919D 8446 E01E 83AF 9AA3 8DCD 55BE 302B
uid Debian Archive Automatic Signing Key (5.0/lenny) <ftpmaster@debian.org>

pub 2048R/6D849617 2009-01-24 [expires: 2013-01-23]
 Key fingerprint = F6CF DE30 6133 3CE2 A43F DAF0 DFD9 9330 6D84 9617
uid Debian-Volatile Archive Automatic Signing Key (5.0/lenny)

pub 4096R/B98321F9 2010-08-07 [expires: 2017-08-05]
 Key fingerprint = 0E4E DE2C 7F3E 1FC0 D033 800E 6448 1591 B983 21F9
uid Squeeze Stable Release Key <debian-release@lists.debian.org>

pub 4096R/473041FA 2010-08-27 [expires: 2018-03-05]
 Key fingerprint = 9FED 2BCB DCD2 9CDF 7626 78CB AED4 B06F 4730 41FA
uid Debian Archive Automatic Signing Key (6.0/squeeze)
 <ftpmaster@debian.org>

IN PRACTICE Adding Trusted Keys

When a third-party package source is added to the sources.list file, APT needs to be told
about the corresponding GPG trusted key (otherwise it will keep complaining that it can't ensure
the authenticity of the packages coming from that repository). The first step is of course to get
the public key. More often than not, the key will be provided as a small text file, which we'll call
key.asc in the following examples.

To add the key to the trusted keyring, the administrator can run apt-key add < key.asc.
Another way is to use the synaptic graphical interface: its “Authentication” tab in the Settings
→ Repositories menu gives the possibility of importing a key from the key.asc file.

For people who would want a dedicated application and more details on the trusted keys, it
is possible to use gui-apt-key (in the package of the same name), a small graphical user
interface which manages the trusted keyring.

Once the appropriate keys are in the keyring, APT will check the signatures before any risky operation,
so that front-ends will display a warning if asked to install a package whose authenticity can't be
ascertained.

6.6. Upgrading from One Stable Distribution to the Next
One of the best-known features of Debian is its ability to upgrade an installed system from one stable
release to the next: dist-upgrade — a well-known phrase — has largely contributed to the project's
reputation. With a few precautions, upgrading a computer can take as little as a few or a few dozen
minutes depending on the download speed from the package repositories.

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Recommended Procedure

119

6.6.1. Recommended Procedure
Since Debian has quite some time to evolve in-between stable releases, you should read the release
notes before upgrading.

BACK TO BASICS Release Notes
The release notes for an operating system (and, more generally, for any software) are a
document giving an overview of the software, with some details concerning the particularities of
one version. These documents are generally short compared to the complete documentation,
and they usually list the features which have been introduced since the previous version.
They also give details on upgrading procedures, warnings for users of previous versions, and
sometimes errata.

Release notes are available online: the release notes for the current stable release have
a dedicated URL, while older release notes can be found with their codenames: http://
www.debian.org/releases/stable/releasenotes http://www.debian.org/releases/lenny/releasenotes

In this section, we will focus on upgrading a Lenny system to Squeeze. This is a major operation on a
system; as such, it is never 100% risk-free, and should not be attempted before all important data has
been backed up.

Another good habit which makes the upgrade easier (and shorter) is to tidy your installed packages
and keep only the ones that are really needed. Helpful tools to do that include aptitude, deborphan
and debfoster (see Section 6.4.1, “aptitude”). For example, you can use the following command:

deborphan | xargs aptitude remove

Now for the upgrading itself. First, you need to change the /etc/apt/sources.list file to tell
APT to get its packages from Squeeze instead of Lenny. If the file only contains references to Stable
rather than explicit codenames, the change isn't even required, since Stable always refers to the latest
released version of Debian. In both cases, the database of available packages must be refreshed (with
the aptitude update command or the refresh button in synaptic).

Once these new package sources are registered, you need to upgrade the aptitude and apt packages;
their versions in Lenny have some limitations that could compromise the automatic upgrade.

Remember to upgrade (or install) the most essential packages listed below, otherwise you might find
that your system is unbootable:

• the bootloader grub-pc or grub-legacy (sometimes lilo);

• the tools that build the initial ramdisk (initrd): initramfs-tools;

• the standard library: libc6 or one of its optimized variants such as libc6-i686;

• the management system for device files: udev;

• last but not least, the kernel: depending on the hardware, the metapackages to use are linux-
image-486, linux-image-686 or linux-image-686-bigmem. These packages will only work for the i386
architecture; owners of computers based on different hardware will use other packages, most likely
linux-image-2.6-amd64 for AMD64 or linux-image-powerpc* for PowerPC).

Once these first steps are done, it is time to handle the upgrade itself, either with aptitude or
synaptic. You should carefully check the suggested actions before applying them: you might want
to add suggested packages or deselect packages which are only recommended and known not to

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

http://www.debian.org/releases/stable/releasenotes
http://www.debian.org/releases/stable/releasenotes
http://www.debian.org/releases/lenny/releasenotes

Chapter 6. Maintenance and Updates: The APT Tools

120

be useful. In any case, the front-end should come up with a scenario ending in a coherent and up-to-
date Squeeze system. Then, all you need is to do is wait while the required packages are downloaded,
answer the Debconf questions and possibly those about locally modified configuration files, and sit
back while APT does its magic.

6.6.2. Handling Problems after an Upgrade
In spite of the Debian maintainers' best efforts, a major system upgrade isn't always as smooth as
you could wish. New software versions may be incompatible with previous ones (for instance, their
default behavior or their data format may have changed). Also, some bugs may slip through the cracks
despite the testing phase which always precedes a Debian release.

To anticipate some of these problems, you can install the apt-listchanges package, which displays
information about possible problems at the beginning of a package upgrade. This information is
compiled by the package maintainers and put in /usr/share/doc/package/NEWS.Debian files for
the benefit of users. Reading these files (possibly through apt-listchanges) should help you avoid bad
surprises.

You might sometimes find that the new version of a software doesn't work at all. This generally
happens if the application isn't particularly popular and hasn't been tested enough; a last-
minute update can also introduce regressions which are only found after the stable release.
In both cases, the first thing to do is to have a look at the bug tracking system at http://
bugs.debian.org/package, and check whether the problem has already been reported. If it hasn't,
you should report it yourself with reportbug. If it is already known, the bug report and the associated
messages are usually an excellent source of information related to the bug:
• sometimes a patch already exists, and it is available on the bug report; you can then recompile

a fixed version of the broken package locally (see Section 15.1, “Rebuilding a Package from its
Sources”);

• in other cases, users may have found a workaround for the problem and shared their insights about
it in their replies to the report;

• in yet other cases, a fixed package may have already been prepared and made public by the
maintainer.

Depending on the severity of the bug, a new version of the package may be prepared specifically
for a new revision of the stable release. When this happens, the fixed package is made available in
the proposed-updates section of the Debian mirrors (see Section 6.1.1.1, “Stable Updates”). The
corresponding entry can then be temporarily added to the sources.list file, and updated packages
can be installed with apt-get or aptitude.

Sometimes the fixed package isn't available in this section yet because it is pending a validation by
the Stable Release Managers. They use http://release.debian.org/proposed-updates/stable.html as a
tracking page for their work; seeing a package listed there doesn't make it available, but it is definitely
on track.

6.7. Keeping a System Up to Date
The Debian distribution is dynamic and changes continually. Most of the changes are in the Testing
and Unstable versions, but even Stable is updated from time to time, mostly for security-related fixes.
Whatever version of Debian a system runs, it is generally a good idea to keep it up to date, so that you
can get the benefit of recent evolutions and bug fixes.

While it is of course possible to periodically run a tool to check for available updates and run the
upgrades, such a repetitive task is tedious, especially when it needs to be performed on several

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

http://release.debian.org/proposed-updates/stable.html

Keeping a System Up to Date

121

machines. Fortunately, like many repetitive tasks, it can be partly automated, and a set of tools have
already been developed to that effect.

The first of these tools is apticron, in the package of the same name. Its main effect is to run a script
daily (via cron). The script updates the list of available packages, and, if some installed packages
are not in the latest available version, it sends an email with a list of these packages along with the
changes that have been made in the new versions. Obviously, this package mostly targets users of
Debian Stable, since the daily emails would be very long for the more mobile versions of Debian.
When updates are available, apticron automatically downloads them. It does not install them — the
administrator will still do it — but having the packages already downloaded and available locally (in
APT's cache) makes the job faster.

Administrators in charge of several computers will no doubt appreciate being informed of pending
upgrades, but the upgrades themselves are still as tedious as they used to be, which is where the
/etc/cron.daily/apt script (in the apt package) comes in handy. This script is also run daily
(and non-interactively) by cron. To control its behavior, use APT configuration variables (which are
therefore stored in a file under /etc/apt/apt.conf.d/). The main three variables are:

APT::Periodic::Update-Package-Lists
This option allows you to specify the frequency (in days) at which the package lists are refreshed.
apticron users can do without this variable, since apticron already does this task.

APT::Periodic::Download-Upgradeable-Packages
Again, this option indicates a frequency (in days), this time for the downloading of the actual
packages. Again, apticron users won't need it.

APT::Periodic::AutocleanInterval
This last option covers a feature that apticron doesn't have. It controls how often obsolete
packages (those not referenced by any distribution anymore) are removed from the APT cache.
This keeps the APT cache at a reasonable size and means that you don't need to worry about that
task.

Other options can allow you to control the cache cleaning behavior with more precision. They are not
listed here, but they are described in the /etc/cron.daily/apt script.

These tools work very well for servers, but desktop users generally prefer a more interactive system.
That is why the “Graphical desktop environment” task installs update-notifier and update-
manager. The former displays an icon in the notification area of desktop environments when updates
are available; clicking on this icon then runs update-manager, a simplified interface to perform
updates. You can browse through available updates, read the description of the relevant packages and
their changelog, and select whether to apply the update or not on a case-by-case basis. Note that
these packages contain configuration data for /etc/cron.daily/apt so that it refreshes the lists
of available packages and downloads the relevant ones. The update-notifier/update-manager
combination is far from having as many features as aptitude and synaptic, since it only handles
the upgrades of packages which are already installed; as a consequence, its minimalistic interface
leaves little room for mistakes, and therefore little risk of breaking the system.

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Chapter 6. Maintenance and Updates: The APT Tools

122

Figure 6.3. Upgrading with update-manager

6.8. Automatic Upgrades

Since Falcot SA has many computers but only limited manpower, its administrators try to make
upgrades as automatic as possible. The programs in charge of these processes must therefore run
with no human intervention.

6.8.1. Configuring dpkg
As we have already mentioned (see sidebar GOING FURTHER Avoiding the questions about
configuration files), dpkg can be instructed not to ask for confirmation when replacing a configuration
file (with the --force-confdef --force-confold options). Interactions can, however, have three
other sources: some come from APT itself, some are handled by debconf, and some happen on the
command line due to package configuration scripts.

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Configuring APT

123

6.8.2. Configuring APT
The case of APT is simple: the -y option (or --assume-yes) tells APT to consider the answer to all
its questions to be “yes”.

6.8.3. Configuring debconf
The case of debconf deserves more details. This program was, from its inception, designed to
control the relevance and volume of questions displayed to the user, as well as the way they are
shown. That is why its configuration requests a minimal priority for questions; only questions above
the minimal priority are displayed. debconf assumes the default answer (defined by the package
maintainer) for questions which it decided to skip.

The other relevant configuration element is the interface used by the front-end. If you choose
noninteractive out of the choices, all user interaction is disabled. If a package tries to display an
informative note, it will be sent to the administrator by email.

To reconfigure debconf, use the dpkg-reconfigure tool from the debconf package; the relevant
command is dpkg-reconfigure debconf. Note that the configured values can be temporarily
overridden with environment variables when needed (for instance, DEBIAN_FRONTEND controls the
interface, as documented in the debconf(7) manual page).

6.8.4. Handling Command Line Interactions
The last source of interactions, and the hardest to get rid of, is the configuration scripts run by dpkg.
There is unfortunately no standard solution, and no answer is overwhelmingly better than another.

The common approach is to suppress the standard input by redirecting the empty content of /dev/
null into it with command </dev/null, or to feed it with an endless stream of newlines. None of
these methods are 100 % reliable, but they generally lead to the default answers being used, since
most scripts consider a lack of reply as an acceptance of the default value.

6.8.5. The Miracle Combination
By combining the previous elements, it is possible to design a small but rather reliable script which can
handle automatic upgrades.

Example 6.3. Non-Interactive Upgrade Script

export DEBIAN_FRONTEND=noninteractive
yes '' | apt-get -y -o Dpkg::Options::="--force-confdef" -o Dpkg::Options::="--force-
confold" dist-upgrade

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Chapter 6. Maintenance and Updates: The APT Tools

124

IN PRACTICE The Falcot SA Case
Falcot computers are a heterogeneous system, with machines having various functions.
Administrators will therefore pick the most relevant solution for each computer.

In practice, the servers running Squeeze are configured with the “miracle combination” above,
and are kept up to date automatically. Only the most critical servers (the firewalls, for instances)
are set up with apticron, so that upgrades always happen under the supervision of an
administrator.

The office workstations in the administrative services also run Squeeze, but they are configured
with the update-notifier/update-manager combination, so that users trigger the upgrades
themselves. The rationale for this decision is that if upgrades happen without an explicit action,
the behavior of the computer might change unexpectedly, which could cause confusion for the
main users.

In the lab, the few computers using Testing — to take advantage of the latest software versions
— are not upgraded automatically either. Administrators only configure APT to prepare the
upgrades but not enact them; when they decide to upgrade (manually), the tedious parts of
refreshing package lists and downloading packages will be avoided, and administrators can
focus on the really useful part.

6.9. Searching for Packages
With the large and ever-growing amount of software in Debian, there emerges a paradox: Debian
usually has a tool for most tasks, but that tool can be very difficult to find amongst the myriad other
packages. The lack of appropriate ways to search for (and to find) the right tool has long been a
problem. Fortunately, this problem has almost entirely been solved.

The most trivial search possible is looking up an exact package name. If apt-cache show package
returns a result, then the package exists. Unfortunately, this requires knowing or even guessing the
package name, which isn't always possible.

TIP Package Naming Conventions
Some categories of packages are named according to a conventional naming scheme; knowing
the scheme can sometimes allow you to guess exact package names. For instance, for Perl
modules, the convention says that a module called XML::Handler::Composer upstream
should be packaged as libxml-handler-composer-perl. The library enabling the use of the gconf
system from Python is packaged as python-gconf. It is unfortunately not possible to define a fully
general naming scheme for all packages, even though package maintainers usually try to follow
the choice of the upstream developers.

A slightly more successful searching pattern is a plain-text search in package names, but it remains
very limited. You can generally find results by searching package descriptions: since each package
has a more or less detailed description in addition to its package name, a keyword search in these
descriptions will often be useful. apt-cache is the tool of choice for this kind of search; for instance,
apt-cache search video will return a list of all packages whose name or description contains the
keyword “video”.

For more complex searches, a more powerful tool such as aptitude is required. aptitude allows
you to search according to a logical expression based on the package's meta-data fields. For instance,
the following command searches for packages whose name contains kino, whose description
contains video and whose maintainer's name contains paul:

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Searching for Packages

125

$ aptitude search kino~dvideo~mpaul
p kino - Non-linear editor for Digital Video data
$ aptitude show kino
Package: kino
State: not installed
Version: 1.3.4-1+b1
Priority: extra
Section: video
Maintainer: Paul Brossier <piem@debian.org>
Uncompressed Size: 9519k
Depends: libasound2 (> 1.0.18), libatk1.0-0 (>= 1.20.0),
 libavc1394-0 (>= 0.5.3), libavcodec52 (>= 4:0.5+svn20090706-3) |
 libavcodec-extra-52 (>= 4:0.5+svn20090706-3), libavformat52
 […]
Recommends: ffmpeg, gawk | mawk, curl
Suggests: udev | hotplug, vorbis-tools, sox, mjpegtools, lame, ffmpeg2theora
Conflicts: kino-dvtitler, kino-timfx, kinoplus
Replaces: kino-dvtitler, kino-timfx, kinoplus
Provides: kino-dvtitler, kino-timfx, kinoplus
Description: Non-linear editor for Digital Video data
 Kino allows you to record, create, edit, and play movies recorded with
 DV camcorders. This program uses many keyboard commands for fast
 navigating and editing inside the movie.

 The kino-timfx, kino-dvtitler and kinoplus sets of plugins, formerly
 distributed as separate packages, are now provided with Kino.
Homepage: http://www.kinodv.org/

Tags: hardware::camera, implemented-in::c, implemented-in::c++,
 interface::x11, role::program, scope::application,
 suite::gnome, uitoolkit::gtk, use::editing,
 works-with::video, x11::application

The search only returns one package, kino, which satisfies all three criteria.

Even these multi-criteria searches are rather unwieldy, which explains why they are not used as much
as they could. A new tagging system has therefore been developed, and it provides a new approach
to searching. Packages are given tags that provide a thematical classification along several strands,
known as a “facet-based classification”. In the case of kino above, the package's tags indicate that
Kino is a Gnome-based software that works on video data and whose main purpose is editing.

Browsing this classification can help you to search for a package which corresponds to known needs;
even if it returns a (moderate) number of hits, the rest of the search can be done manually. To do that,
you can use the ~G search pattern in aptitude, but it is probably easier to simply navigate the site
where tags are managed: http://debtags.alioth.debian.org/cloud/. Selecting the works-with::video
and use::editing tags yields a handful of packages, including the kino and pitivi video editors. This
system of classification is bound to be used more and more as time goes on, and package managers
will gradually provide efficient search interfaces based on it.

To sum up, the best tool for the job depends on the complexity of the search that you wish to do:

• apt-cache only allows searching in package names and descriptions, which is very convenient
when looking for a particular package that matches a few target keywords;

• when the search criteria also include relationships between packages or other meta-data such as
the name of the maintainer, synaptic will be more useful;

• when a tag-based search is needed, a good tool is packagesearch, a graphical interface
dedicated to searching available packages along several criteria (including the names of the files
that they contain);

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

http://debtags.alioth.debian.org/cloud/

Chapter 6. Maintenance and Updates: The APT Tools

126

• and when complex queries with logical operators are needed, the most powerful tool is aptitude
along with its somewhat obscure search pattern syntax, both in the command-line and interactive
mode.

Free Sample of The Debian Administrator's Handbook — http://debian-handbook.info
C

op
yr

ig
ht

 2
01

1
Fr

ee
xi

an
 S

A
R

L
–

A
ll

ri
gh

ts
 r

es
er

ve
d

Support the project

We hope you enjoyed this sample chapter of The Debian Administrator's Handbook. If you
want to read the full book, please order a copy and/or contribute to its liberation fund.

Click here to order your copy and contribute to the liberation fund

Follow the project

You can have the latest news of the project on its blog, on its official Google+ page or on
Raphaël Hertzog's newsletter:

• Blog: http://debian-handbook.info/blog/

• Google+ page: http://debian-handbook.info/go/google-plus/

• Newsletter: http://raphaelhertzog.com/email-newsletter/

Thank you!

http://raphaelhertzog.com/email-newsletter/
http://www.ulule.com/debian-handbook/?utm_campaign=project_1973&utm_source=rh&utm_medium=pdf
http://debian-handbook.info/go/google-plus/
http://debian-handbook.info/blog/

