Auto Mounting Windows Shares in GNOME with Gigolo and gvfs-fuse

The traditional way to mount Windows (or Samba) shares involves hardcoding the credentials in a plain-text file and some /etc/fstab entry to mount it automatically at boot time. If you don’t want to store a plain-text copy of your password, you’re bound to mount your shares interactively.

This is clearly sub-optimal and I thought that there must be a better way to handle this in the context of a GNOME desktop (which already supports connecting to such shares in the file browser). So I looked for a solution and after a bit of googling I found one.

Start by installing a few packages:

$ sudo apt-get install gigolo gvfs-fuse

Launch Gigolo, setup your shares as bookmarks and mark them as “Auto-Connect”.

During (first) connection, you will be prompted for your password and you have the possibility to store it in the GNOME keyring (and here it’s encrypted, not in plain-text!).

You should also configure the Gigolo preferences so that it starts minimized in the system tray (because we’re going to run it on session startup):

The last step is to ensure that Gigolo is executed at the start of each GNOME session. Unfortunately this GNOME feature is no longer accessible from the control center so you have to execute gnome-session-properties manually (from a terminal or the command line accessible via Alt+F2). Click on “Add” to add a new startup program:

You’re done!

The main limitation is that those shares are not real mounts, instead they are available within GNOME’s virtual file system (GVFS). If you use only 100% GNOME application, then it’s not a problem but otherwise it’s pretty annoying. You can’t “cd” in those shares from a terminal for example.

There’s a workaround though, it’s called “gvfs-fuse” and you installed it right at the start of this HOWTO. This service hooks into GVFS and exports all the virtual filesystem(s) in a real fuse-based mount that is automatically setup in ~/.gvfs/. However for this to work, the user must be in the “fuse” group. So you should run something like this:

$ sudo adduser $USER fuse

By the way, I haven’t found a way to use a non-hidden directory so if you want this directory to be more visible, I suggest that you create a symlink pointing to it.

Do you want to read more HOWTO like this one? Click here to subscribe to my free newsletter, you can opt to receive future articles by email.

Understand dpkg and don’t get stuck with a maintainer script failure

Continuing my series of articles on dpkg’s errors, this time I’ll cover a pretty common one which has several variations:

Setting up acpid (1:2.0.12-1) ...
rm: cannot remove `/etc/rc1.d/K20acpid': No such file or directory
dpkg: error processing acpid (--configure):
 subprocess installed post-installation script returned error exit status 1
Errors were encountered while processing:

Even if dpkg is failing and outputting the error message, the real problem is not in dpkg but in the installed package (acpid in the example above). As we already learned, a package contains not only files but also “maintainer scripts” that are executed at various points of the installation process (see some useful graphics to understand how they are called, thanks to Margarita Manterola).

Maintainer scripts in a package upgrade

In the introductory example it was acpid’s “post-installation script” that failed, and dpkg is only forwarding that failure back to the caller. The maintainer scripts are stored in /var/lib/dpkg/info/. You can thus inspect them and even modify them if you hit a bug and want to work around it (do this only if you understand what you do!).

One common modification is to add “set -x” at the start of the script and to retry the failing operation. That way you can see what’s executed exactly. Here’s what the output could look like after the addition of “set -x” to /var/lib/dpkg/info/acpid.postinst:

$ sudo dpkg --configure acpid
Setting up acpid (1:2.0.12-1) ...
+ dpkg --compare-versions 1:2.0.11-1 lt-nl 1.0.10-3
+ dpkg --compare-versions 1:2.0.11-1 lt-nl 1.0.6-16
+ dpkg --compare-versions 1:2.0.11-1 lt 1.0.6-6
+ rm /etc/rc1.d/K20acpid
rm: cannot remove `/etc/rc1.d/K20acpid': No such file or directory
dpkg: error processing acpid (--configure):
 subprocess installed post-installation script returned error exit status 1
Errors were encountered while processing:

This output helps you locate the command that is actually failing. Here’s it’s relatively easy since we have an error message from “rm”. And the fix is trivial too, we replace “rm” with “rm -f” so that it doesn’t fail when the file doesn’t exist (this is a fake bug I made up for this article—I just added a failing rm call—but it’s inspired by real bugs I experienced).

Maintainer scripts are supposed to be idempotent: we should be able to execute them several times in a row without bad consequences. It happens from time to time that the maintainer gets this wrong… on the first try it works, so he uploads his package and we discover the problem only later once someone ended up executing the same code twice for some reason.

Follow me on, Twitter, Facebook and Google+. Or subscribe to this blog by RSS or by email.

Understanding dpkg’s file overwrite error

This is probably one of the most common errors. You’re very likely to encounter it, in particular if you tend to mix packages from various origins/distributions, or if you’re using unstable. It looks like this:

Unpacking gbonds-data (from .../gbonds-data_2.0.3-2_all.deb) ...
dpkg: error processing /var/cache/apt/archives/gbonds-data_2.0.3-2_all.deb (--unpack):
 trying to overwrite '/usr/share/omf/gbonds/gbonds-C.omf', which is also in package gbonds 2.0.2-9
dpkg-deb: subprocess paste killed by signal (Broken pipe)

A given file can only be provided by a single package. So if you try to install a package that provides a file that is already part of another installed package, it will fail with a message similar to the above one.

Sometimes this failure will be meaningful because dpkg prevented you to install two unrelated packages that happen to have a real file conflict. In other cases, like in the example above, this failure is just the result of a mistake.

Folder with gears

The version 2.0.3-1 of gbonds split the architecture independent files in a separate package called gbonds-data but the maintainer forgot to add the required control field in gbonds-data (Replaces: gbonds (<< 2.0.3-1)). That field allows dpkg to take over files from the listed packages.

If you want to ignore the file conflict and let dpkg take over the file (even without the Replaces), you can pass the --force-overwrite command-line option.

But you’re not using dpkg directly, you’re probably using an APT frontend (like apt-get or aptitude). Don’t worry, there’s a simple way to define custom dpkg options to use:

# apt-get -o Dpkg::Options::="--force-overwrite" install gbonds-data

The syntax is a bit weird, but the “::” after “Options” is important, it’s the syntax that defines a list item value instead of a single value. And you can effectively pass multiple options to dpkg by putting multiple -o Dpkg::Options::="…".

If you want to read more articles like this one, click here to subscribe to my free newsletter. You can also follow me on, Twitter and Facebook.

Deciphering one of dpkg’s weirdest errors: unable to open ‘/path/to/foo.dpkg-new’

We already studied one weird error of dpkg, let’s do another one:

Unpacking replacement libexo-common ...
dpkg: error processing /var/cache/apt/archives/libexo-common_0.6.1-1_all.deb (--unpack):
 unable to open '/usr/share/doc/exo/html/C/images/exo-preferred-applications-internet.png.dpkg-new': No such file or directory

Rather difficult to understand on the first look right? Let’s see in detail what’s usually happening when you get this error.

The first hint comes from the file extension “.dpkg-new”. This extension is used by dpkg to unpack the updated files near the old files. When everything has been unpacked, they are renamed over the old files.

The failure happens precisely when dpkg tries to rename the file (in fact when it tries to fsync() it before the rename)… but why does it fail?

Usually because there are unexpected symlinks (or bind mounts) involved that resulted in two different files being installed in the same directory. For example consider package that provides /dir1/a-file and /dir2/a-file. Now imagine that on the target system, /dir1 is a real directory but /dir2 is a symbolic link that points to /dir1.

When dpkg processes /dir1/a-file.dpkg-new everything is fine, but when it tries to process /dir2/a-file.dpkg-new it will fail because that file is the same than /dir1/a-file.dpkg-new which has already been renamed.

Diagnosing further the problem requires to understand why there’s a symlink instead of a real directory. It might be two packages that were badly coordinated, or a problem in the package itself because it lacks some code that drops the symlink in the preinst (so that dpkg installs the real directory instead of keeping the symlink).

There might be variations in the way two files end up sharing the same directory, but this simple example should have clarified the nature of the underlying problem.

Subscribe to this blog by RSS, by email or on Facebook.